Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 19.122
Filter
1.
BMC Oral Health ; 24(1): 472, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641578

ABSTRACT

PURPOSE: The aim of the current study was to evaluate the effect of simulated gastric acid on the color and translucency of different indirect restorative materials. MATERIALS AND METHODS: A total of 36 disc-shaped samples were cut by using an isomet saw and divided into four equal groups (n = 9) according to the material type: Group Z: translucent zirconia (Ceramill® Zolid ht.+ preshade, Amann Girrbach, Koblach, Austria); Group E: lithium disilicate (IPS e.max CAD, Ivoclar Vivadent AG, Schaan, Liechtenstein); Group C: resin nanoceramic (Cerasmart, GC, Tokyo, Japan); Group P: polyether ether ketone (PEEK) (Bettin Zirconia Dentale Italy) veneered with indirect high impact polymer composite (HIPC) (breCAM HIPC, Bredent GmbH & Co. KG, Germany). The samples were immersed in simulated gastric acid (HCl, pH 1.2) for 96 hours at 37 °C in an incubator. The color change (ΔE00) and translucency (RTP00) were measured every 9.6 hours (one-year clinical simulation) of immersion in simulated gastric acid. RESULTS: For color change (∆E00) and translucency (RTP00) among the tested materials, there was a highly statistically significant difference (P < 0.001) after every year of follow-up. The color change in both Z and G groups was the lowest after 1 year of acid immersion, followed by that in group H, and the highest change in color was recorded in group P. CONCLUSION: High translucent zirconia is recommended in patients who are concerned about esthetic, especially with acidic oral environment.


Subject(s)
Ceramics , Dental Materials , Humans , Materials Testing , Zirconium , Surface Properties , Color , Computer-Aided Design
2.
BMC Oral Health ; 24(1): 410, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566034

ABSTRACT

BACKGROUND: To clinically compare the effect of the conventional and the digital workflows on the passive fit of a screw retained bar splinting two inter-foraminal implants. METHODS: The current study was designed to be a parallel triple blinded randomised clinical trial. Thirty six completely edentulous patients were selected and simply randomized into two groups; conventional group (CG) and digital group (DG). The participants, investigator and outcome assessor were blinded. In the group (CG), the bar was constructed following a conventional workflow in which an open top splinted impression and a lost wax casting technology were used. However, in group (DG), a digital workflow including a digital impression and a digital bar milling technology was adopted. Passive fit of each bar was then evaluated clinically by applying the screw resistance test using the "flag" technique in the passive and non passive situations. The screw resistance test parameter was also calculated. Unpaired t-test was used for intergroup comparison. P-value < 0.05 was the statistical significance level. The study protocol was reviewed by the Research Ethics Committee in the author's university (Rec IM051811). Registration of the clinical trial was made on clinical trials.gov ID NCT05770011. An informed consent was obtained from all participants. RESULTS: Non statistically significant difference was denoted between both groups in all situations. In the passive situation, the mean ± standard deviation values were 1789.8° ± 20.7 and1786.1° ± 30.7 for the groups (CG) and (DG) respectively. In the non passive situation, they were 1572.8° ± 54.2 and 1609.2° ± 96.9. Regarding the screw resistance test parameter, they were 217° ± 55.3 and 176° ± 98.8. CONCLUSION: Conventional and digital fabrication workflows had clinically comparable effect on the passive fit of screw retained bar attachments supported by two dental implants.


Subject(s)
Dental Implants , Mouth, Edentulous , Humans , Workflow , Dental Impression Technique , Bone Screws , Computer-Aided Design , Dental Prosthesis, Implant-Supported/methods , Dental Prosthesis Design
3.
BMJ Open ; 14(4): e078240, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38569685

ABSTRACT

INTRODUCTION: Custom insoles are a routine treatment for many foot pathologies, and the use of computer-aided design and computer-aided manufacturing (CAD/CAM) is well established within clinical practice in the UK. The method of foot shape capture used to produce insoles varies throughout orthotic services. This trial aims to investigate the effectiveness of two common shape-capture techniques on patient-reported outcomes in people who require insoles for a foot or ankle pathology. METHODS AND ANALYSIS: This double-blinded randomised controlled trial will involve two intervention groups recruited from a National Health Service orthotic service. Participants will be randomly assigned to receive a pair of custom CAD/CAM insoles, manufactured either from a direct digital scan or a foam box cast of their feet and asked to wear the insoles for 12 weeks. The primary outcome measure will be the Foot Health Status Questionnaire (FHSQ) pain subdomain, recorded at baseline (immediately after receiving the intervention), 4, 8 and 12 weeks post intervention. Secondary outcome measures will include FHSQ foot function and foot health subdomains recorded at baseline, 4, 8 and 12 weeks. The Orthotic and Prosthetic User Survey Satisfaction with Device will be recorded at 12 weeks. The transit times associated with each arm will be measured as the number of days for each insole to be delivered after foot shape capture. Tertiary outcome measures will include participant recruitment and dropout rates, and intervention adherence measured as the daily usage of the insoles over 12 weeks. The change in FHSQ scores for the subdomains and insole usage will be compared between the groups and time points, and between group differences in time in transit, cost-time analysis and environmental impact will be compared. ETHICS AND DISSEMINATION: Ethical approval was obtained from the Health Research Authority, London Stanmore Research Ethics Committee (22/LO/0579). Study findings will be submitted for publication in peer-reviewed journals, conference presentations and webinars. TRIAL REGISTRATION NUMBER: NCT05444192.


Subject(s)
Foot Diseases , State Medicine , Humans , Foot , Research Design , Pain , Computer-Aided Design , Randomized Controlled Trials as Topic
4.
BMC Oral Health ; 24(1): 415, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38575886

ABSTRACT

BACKGROUND: The objective of the present study was to evaluate the reliability of an augmented reality drilling approach and a freehand drilling technique for the autotransplantation of single-rooted teeth. MATERIALS AND METHODS: Forty samples were assigned to the following surgical techniques for drilling guidance of the artificial sockets: A. augmented reality technique (AR) (n = 20) and B. conventional free-hand technique (FT) (n = 20). Then, two models with 10 teeth each were submitted to a preoperative cone-beam computed tomography (CBCT) scan and a digital impression by a 3D intraoral scan. Afterwards, the autotrasplanted teeth were planned in a 3D dental implant planning software and transferred to the augmented reality device. Then, a postoperative CBCT scan was performed. Data sets from postoperative CBCT scans were aligned to the planning in the 3D implant planning software to analize the coronal, apical and angular deviations. Student's t-test and Mann-Whitney non-parametric statistical analysis were used to analyze the results. RESULTS: No statistically significant differences were shown at coronal (p = 0.123) and angular (p = 0.340) level; however, apical deviations between AR and FT study groups (p = 0.008) were statistically significant different. CONCLUSION: The augmented reality appliance provides higher accuracy in the positioning of single-root autotransplanted teeth compared to the conventional free-hand technique.


Subject(s)
Augmented Reality , Dental Implants , Surgery, Computer-Assisted , Humans , Transplantation, Autologous , Reproducibility of Results , Computer-Aided Design , Cone-Beam Computed Tomography/methods , Imaging, Three-Dimensional
5.
BMC Oral Health ; 24(1): 457, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622649

ABSTRACT

BACKGROUND: Self-glazed zirconia (SZ) restorations are made by a novel additive three-dimensional gel deposition approach, which are suitable for a straightforward completely digital workflow. SZ has recently been used as minimally invasive veneer, but its clinical outcomes have not been clarified yet. This study aimed to evaluate the preliminary clinical outcomes of SZ veneers compared with the widely used lithium disilicate glass-ceramic veneers made by either pressing (PG) or milling (MG) process. METHODS: Fifty-six patients treated with SZ, PG, and MG veneers by 2 specialists between June 2018 and October 2022 were identified. Patients were recalled for follow-up at least 1 year after restoration. Clinical outcomes were assessed by 2 independent evaluators according to the modified United States Public Health Service (USPHS) criteria. Overall patient satisfaction was assessed using visual analogue scale (VAS), and analyzed by one-way ANOVA. Chi-square test was applied to compare the difference in the success and survival rates among the 3 groups. RESULTS: A total of 51 patients restored with 45 SZ, 40 PG, and 41 MG veneers completed the study, with a patient dropout rate of 8.9%. Mean and standard deviation of follow-up period was 35.0 ± 14.7 months. All restorations performed well at baseline, except for 2 SZ veneers with mismatched color (rated Bravo). During follow-up, marginal discrepancy (rated Bravo) was found in 4 MG veneers and 1 PG veneer, and partially fractured (rated Charlie) was found in another 2 PG veneers. The survival rate of SZ, PG, and MG veneers was 100%, 95%, and 100%, with a success rate of 95.56%, 92.50%, and 90.24%, respectively, none of which were significantly different (p = 0.099 and 0.628, respectively). The mean VAS score of SZ, PG, and MG was 95.00 ± 1.57, 93.93 ± 2.40, and 94.89 ± 2.00 respectively, without significant difference (p > 0.05). CONCLUSION: SZ veneers exhibited comparable preliminary clinical outcomes to PG and MG veneers, which could be considered as a feasible option for minimally invasive restorative treatment.


Subject(s)
Dental Restoration Failure , Dental Veneers , Nitriles , Zirconium , Humans , Retrospective Studies , Ceramics , Materials Testing , Computer-Aided Design
6.
PLoS One ; 19(4): e0301799, 2024.
Article in English | MEDLINE | ID: mdl-38625846

ABSTRACT

BACKGROUND: Marginal fit significantly impacts the long-term success of dental restorations. Different pattern fabrication methods, including hand-waxing, milling, or 3D printing, may affect restorations accuracy. The effect of porcelain firing cycles on the marginal fit of metal-ceramic restorations remains controversial, with conflicting findings across studies. PURPOSE: The aim was to evaluate the potential effects of multiple porcelain firings (3, 5, 7 cycles) as well as pattern fabrication method (conventional hand-waxing, milling, and 3D printing) on the marginal adaptation of 3-unit implant-supported metal-ceramic fixed partial dentures. It was hypothesized that neither the wax pattern fabrication method nor repeated ceramic firings would significantly affect the marginal adaptation of metal-ceramic crowns. METHODS: In this in-vitro study, 30 Cobalt-Chromium alloy frameworks were fabricated based on pattern made through three techniques: conventional hand-waxing, CAD-CAM milling, and CAD-CAM 3D printing (n = 10 per group). Sixteen locations were marked on each abutment to measure the vertical marginal gap at four stages: before porcelain veneering and after 3, 5, and 7 firing cycles. The vertical marginal gap was measured using direct microscopic technique at ×80 magnification. Mean vertical marginal gap values were calculated and two-way ANOVA and Tukey's post hoc tests were used for inter-group comparisons (α = 0.05). RESULTS: The 3D printing group showed significantly lower (P<0.001) mean vertical marginal gaps (60-76 µm) compared to the milling (77-115 µm) and conventional hand-waxing (102-110 µm) groups. The milling group exhibited a significant vertical gap increase after 3 firing cycles (P<0.001); while the conventional (P = 0.429) and 3D printing groups (P = 0.501) showed no significant changes after 7 firing cycles. Notably, the vertical marginal gap in all groups remained below the clinically acceptable threshold of 120 µm. CONCLUSION: CAD-CAM 3D printing provided superior marginal fit compared to CAD-CAM milling and conventional hand-wax pattern fabrication methods. The impact of porcelain firing on the mean marginal gap was significant only in the milling group. All three fabrication techniques yielded clinically acceptable vertical marginal adaptation after repeated firings. Additive manufacturing holds promise to produce precise implant-supported prostheses.


Subject(s)
Computer-Aided Design , Dental Porcelain , Printing, Three-Dimensional , Denture, Partial, Fixed , Metal Ceramic Alloys , Dental Prosthesis Design , Crowns
7.
PLoS One ; 19(4): e0301361, 2024.
Article in English | MEDLINE | ID: mdl-38625957

ABSTRACT

OBJECTIVES: The impression technique highly influences the adaptation of ceramic restorations. Not enough information is available to compare the marginal (MF) and internal fit (IF) of endocrowns fabricated with various digitization techniques. Therefore, this in-vitro study aimed to compare the MF and IF of lithium disilicate (LDS) endocrowns fabricated through direct and indirect digital scanning methods. MATERIALS AND METHODS: One extracted maxillary molar was used to fabricate endocrowns. The digitization of the model was performed with (G1) direct scanning (n = 10) utilizing an intraoral scanner (IOS), (G2) indirectly scanning the conventional impression taken from the model using the same IOS (n = 10), (G3) indirectly digitalizing the obtained impression using an extraoral scanner (EOS) (n = 10), and (G4) scanning the poured cast using the same EOS (n = 10). The MF and IF of the endocrowns were measured using the replica method and a digital stereomicroscope. The Kruskal-Wallis test was used to analyze data. RESULTS: The studied groups differed significantly (p<0.001). G2 (130.31±7.87 µm) and G3 (48.43±19.14 µm) showed the largest and smallest mean vertical marginal gap, respectively. G2 and G3 led to the highest and lowest internal gaps in all regions, respectively. With significant differences among the internal regions (p<0.001), the pulpal area demonstrated the most considerable misfit in all groups. CONCLUSIONS: Scanning the impression using an extraoral scanner showed smaller marginal and internal gaps.


Subject(s)
Computer-Aided Design , Dental Porcelain , Ceramics , Molar , Dental Prosthesis Design , Dental Impression Technique
8.
J Dent ; 144: 104987, 2024 May.
Article in English | MEDLINE | ID: mdl-38580056

ABSTRACT

OBJECTIVES: To evaluate whether post-milling firing and material type affect the fabrication trueness and internal fit of lithium disilicate crowns. METHODS: A prefabricated cobalt chromium abutment was digitized to design a mandibular right first molar crown. This design file was used to fabricate crowns from different lithium disilicate ceramics (nano-lithium disilicate (AM), fully crystallized lithium disilicate (IN), advanced lithium disilicate (TS), and lithium disilicate (EX)) (n = 10). Crowns, the abutment, and the crowns when seated on the abutment were digitized by using an intraoral scanner. Fabrication trueness was assessed by using the root mean square method, while the internal fit was evaluated according to the triple scan method. These processes were repeated after the post-milling firing of AM, TS, and EX. Paired samples t-tests were used to analyze the effect of post-milling firing within AM, TS, and EX, while all materials were compared with 1-way analysis of variance and Tukey HSD tests (α = 0.05). RESULTS: Post-milling firing reduced the surface deviations and internal gap of AM and EX (P ≤ 0.014). AM mostly had higher deviations and internal gaps than other materials (P ≤ 0.030). CONCLUSIONS: Post-milling firing increased the trueness and internal fit of tested nano-lithium disilicate and lithium disilicate ceramics. Nano-lithium disilicate mostly had lower trueness and higher internal gap; however, the maximum meaningful differences among tested materials were small. Therefore, the adjustment duration and clinical fit of tested crowns may be similar. CLINICAL SIGNIFICANCE: Tested lithium disilicate ceramics may be suitable alternatives to one another in terms of fabrication trueness and internal fit, considering the small differences in measured deviations and internal gaps.


Subject(s)
Computer-Aided Design , Crowns , Dental Porcelain , Dental Prosthesis Design , Materials Testing , Dental Porcelain/chemistry , Humans , Dental Abutments , Ceramics/chemistry , Surface Properties , Dental Materials/chemistry , Dental Marginal Adaptation , Chromium Alloys/chemistry
9.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(2): 234-241, 2024 Apr 01.
Article in English, Chinese | MEDLINE | ID: mdl-38597083

ABSTRACT

OBJECTIVES: This study proposes a chairside digital design and manufacturing method for band and loop space maintainers and preliminarily validates its clinical feasibility. METHODS: Clinical cases of 10 children requiring space maintenance caused by premature loss of primary teeth were collected. Intraoral scan data of the affected children were also collected to establish digital models of the missing teeth. Using a pediatric band and loop space maintainer design software developed by our research team, a rapid personalized design of band and loop structures was achieved, and a digital model of an integrated band and loop space maintainer was ultimately generated. A chairside space maintainer was manufactured through metal computer numerical control machining for the experimental group, whereas metal 3D printing in the dental laboratory was used for the control group. A model fitting assessment was conducted for the space maintainers of both groups, and senior pediatric dental experts were invited to evaluate the clinical feasibility of the space maintainers with regard to fit and stability using the visual analogue scale scoring system. Statistical analysis was also performed. RESULTS: The time spent in designing and manufacturing the 10 space maintainers of the experimental group was all less than 1 h. Statistical analysis of expert ratings showed that the experimental group outperformed the control group with regard to fit and stability. Both types of space maintainers met clinical requirements. CONCLUSIONS: The chairside digital design and manufacturing method for pediatric band and loop space maintainers proposed in this study can achieve same-day fitting of space maintainers at the first appointment, demonstrating good clinical feasibility and significant potential for clinical application.


Subject(s)
Tooth Loss , Humans , Child , Printing, Three-Dimensional , Space Maintenance, Orthodontic , Computer-Aided Design
10.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(2): 227-233, 2024 Apr 01.
Article in English, Chinese | MEDLINE | ID: mdl-38597082

ABSTRACT

OBJECTIVES: This clinical study aimed to assess the trueness of three intraoral scanners for the recor-ding of the maximal intercuspal position (MIP) to provide a reference for clinical practice. METHODS: Ten participants with good occlusal relationship and healthy temporomandibular joint were recruited. For the control group, facebow transferring procedures were performed, and bite registrations at the MIP were used to transfer maxillary and mandibular casts to a mechanical articulator, which were then scanned with a laboratory scanner to obtain digital cast data. For the experimental groups, three intraoral scanners (Trios 3, Carestream 3600, and Aoralscan 3) were used to obtain digital casts of the participants at the MIP following the scanning workflows endorsed by the corresponding manufacturers. Subsequently, measurement points were marked on the control group's digital casts at the central incisors, canines, and first molars, and corresponding distances between these points on the maxillary and mandibular casts were measured to calculate the sum of measured distances (DA). Distances between measurement points in the incisor (DI), canine (DC), and first molar (DM) regions were also calculated. The control group's maxillary and mandibular digital casts with the added measurement points were aligned with the experimental group's casts, and DA, DI, DC, and DM values of the aligned control casts were determined. Statistical analysis was performed on DA, DI, DC, and DM obtained from both the control and experimental groups to evaluate the trueness of the three intraoral scanners for the recording of MIP. RESULTS: In the control group, DA, DI, DC, and DM values were (39.58±6.40), (13.64±3.58), (14.91±2.85), and (11.03±1.56) mm. The Trios 3 group had values of (38.99±6.60), (13.42±3.66), (14.55±2.87), and (11.03±1.69) mm. The Carestream 3600 group showed values of (38.57±6.36), (13.56±3.68), (14.45±2.85), and (10.55±1.41) mm, while the Aoralscan 3 group had values of (38.16±5.69), (13.03±3.54), (14.23±2.59), and (10.90±1.54) mm. Analysis of variance revealed no statistically significant differences between the experimental and control groups for overall deviation DA (P=0.96), as well as local deviations DI (P=0.98), DC (P=0.96), and DM (P=0.89). CONCLUSIONS: With standardized scanning protocols, the three intraoral scanners demonstrated comparable trueness to traditional methods in recording MIP, fulfilling clinical requirements.


Subject(s)
Incisor , Molar , Humans , Mandible , Maxilla , Computer-Aided Design , Imaging, Three-Dimensional , Dental Impression Technique
11.
J Mech Behav Biomed Mater ; 154: 106536, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579394

ABSTRACT

OBJECTIVE: This study aimed to conduct a comparison of trueness and physical and surface properties among five distinct types of additive manufactured (AM) zirconia crowns and zirconia crowns produced using the subtractive manufacturing (SM). MATERIAL AND METHODS: Zirconia crowns were fabricated using five distinct techniques, each varying in the method of slurry transfer and photocuring source. Each experimental group utilized either one of the four digital light processing (DLP)-based techniques (DLP spreading, DLP spreading gradation, DLP vat and DLP circular spreading) or the stereolithography (SLA)-based technique (SLA spreading). The control (CON) group employed SM. To assess accuracy, trueness was measured between the scan and reference data. To analyze the physical properties, voids were examined using high-energy spiral micro-computed tomography scans, and the crystal structure analysis was performed using X-ray diffraction (XRD). Surface roughness was assessed through laser scanning microscopy. RESULTS: Differences in the trueness of internal surfaces of crowns were found among the groups (P < 0.05). Trueness varied across the measurement surfaces (occlusal, lateral, and marginal) in all the groups except for the DLP spreading gradation group (P < 0.05). Voids were observed in all AM groups. All groups showed similar XRD patterns. All AM groups showed significantly greater surface roughness compared to the CON group (P < 0.001). CONCLUSION: The AM zirconia crowns showed bubbles and a rougher surface compared to the SM crowns. All groups exhibited typical zirconia traits and trueness levels within clinically acceptable limits, suggesting that current zirconia AM techniques could be suitable for dental applications.


Subject(s)
Computer-Aided Design , Crowns , X-Ray Microtomography , Zirconium , Surface Properties
12.
J Mech Behav Biomed Mater ; 154: 106533, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38598918

ABSTRACT

The present work aims to develop a production method of pre-sintered zirconia-toughened-alumina (ZTA) composite blocks for machining in a computer-aided design and computer-aided manufacturing (CAD-CAM) system. The ZTA composite comprised of 80% Al2O3 and 20% ZrO2 was synthesized, uniaxially and isostatically pressed to generate machinable CAD-CAM blocks. Fourteen green-body blocks were prepared and pre-sintered at 1000 °C. After cooling and holder gluing, a stereolithography (STL) file was designed and uploaded to manufacture disk-shaped specimens projected to comply with ISO 6872:2015. Seventy specimens were produced through machining of the blocks, samples were sintered at 1600 °C and two-sided polished. Half of the samples were subjected to accelerated autoclave hydrothermal aging (20h at 134 °C and 2.2 bar). Immediate and aged samples were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Optical and mechanical properties were assessed by reflectance tests and by biaxial flexural strength test, Vickers indentation and fracture toughness, respectively. Samples produced by machining presented high density and smooth surfaces at SEM evaluation with few microstructural defects. XRD evaluation depicted characteristic peaks of alpha alumina and tetragonal zirconia and autoclave aging had no effect on the crystalline spectra of the composite. Optical and mechanical evaluations demonstrated a high masking ability for the composite and a characteristic strength of 464 MPa and Weibull modulus of 17, with no significant alterations after aging. The milled composite exhibited a hardness of 17.61 GPa and fracture toughness of 5.63 MPa m1/2, which remained unaltered after aging. The synthesis of ZTA blocks for CAD-CAM was successful and allowed for the milling of disk-shaped specimens using the grinding method of the CAD-CAM system. ZTA composite properties were unaffected by hydrothermal autoclave aging and present a promising alternative for the manufacture of infrastructures of fixed dental prostheses.


Subject(s)
Aluminum Oxide , Ceramics , Materials Testing , Aluminum Oxide/chemistry , Ceramics/chemistry , Surface Properties , Zirconium/chemistry , Computer-Aided Design , Dental Materials
13.
BMC Oral Health ; 24(1): 444, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609958

ABSTRACT

BACKGROUND: This study evaluated the shear bond strength (SBS) of two different polyetheretherketone (PEEK) and CAD-CAM materials after aging. METHODS: A total of 42 frameworks were designed and milled from 2 different PEEK discs (Copra Peek, P and BioHPP, B). P and B frameworks were divided into 3 subgroups (n = 7). 14 slices were prepared each from feldspathic ceramic (Vitablocs Mark II, VM), hybrid nanoceramic (Cerasmart, CS), and polymer-infiltrated ceramic (Vita Enamic, VE) blocks. After surface preparations, the slices were cemented to P and B surfaces. The samples were subjected to thermal aging (5000 cycles). SBS of all the samples was measured. Fractured surfaces were examined by SEM/EDX analysis. The Shapiro-Wilk, Two-way Robust ANOVA and Bonferroni correction tests were used to analyze the data (a = .05). RESULTS: Frameworks, ceramics, and frameworks x ceramics had significant differences (p < 0.05). The highest SBS value was seen in B-VM (p < 0.05). VM offered the highest SBS with both P and B. The differences between P-VM, P-CS, P-VE and B-CS and B-VE were insignificant (p > 0.05). According to EDX analysis, ytterbium and fluorine was seen in B content, unlike P. While VM and CS contained fluorine, barium, and aluminum; sodium and aluminum were observed in the VE structure. CONCLUSION: Bonding of P and B with VM offers higher SBS. VM, CS and VE did not make any difference in SBS for P, however VM showed a significant difference for B.


Subject(s)
Aluminum , Benzophenones , Fluorine , Polymers , Humans , Polyethylene Glycols , Computer-Aided Design , Ketones
14.
Biofabrication ; 16(3)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38569493

ABSTRACT

With the advent of personalized medicine, the drug delivery system will be changed significantly. The development of personalized medicine needs the support of many technologies, among which three-dimensional printing (3DP) technology is a novel formulation-preparing process that creates 3D objects by depositing printing materials layer-by-layer based on the computer-aided design method. Compared with traditional pharmaceutical processes, 3DP produces complex drug combinations, personalized dosage, and flexible shape and structure of dosage forms (DFs) on demand. In the future, personalized 3DP drugs may supplement and even replace their traditional counterpart. We systematically introduce the applications of 3DP technologies in the pharmaceutical industry and summarize the virtues and shortcomings of each technique. The release behaviors and control mechanisms of the pharmaceutical DFs with desired structures are also analyzed. Finally, the benefits, challenges, and prospects of 3DP technology to the pharmaceutical industry are discussed.


Subject(s)
Drug Delivery Systems , Precision Medicine , Precision Medicine/methods , Printing, Three-Dimensional , Pharmaceutical Preparations , Computer-Aided Design
15.
Int J Oral Maxillofac Implants ; 39(2): 263-270, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657218

ABSTRACT

PURPOSE: To describe the use of digital technology to surgically guide the shell technique using allogenic cortical plates for a fully guided bone augmentation procedure. MATERIALS AND METHODS: A total of 10 patients who required bone augmentation for implant placement were included in this study. Allogenic cortical plates were planned using CAD/CAM to have identical thickness to the original cortical plates, then were digitally positioned and shaped to outline the bone defect according to the existing anatomical details. A cutting pattern and a surgical template were manufactured according to the digitally preplanned bone graft and the intraoral setting. RESULTS: A total of 12 horizontal bone grafting procedures were performed using the shell technique with allogenic cortical plates. All grafting procedures were deemed successful and allowed for ideal 3D implant positioning. Of the 12 bone grafting procedures, which used a surgical template to position the cortical plate, 3 required an adjustment to reposition the plate to a more ideal position. CONCLUSIONS: Digital technology was used to create a surgical template to guide the shell bone grafting technique with allogenic cortical plates. All surgical templates offered a fixed support to hold the cortical allogenic plate in the preplanned position, offering a predictable, simplified, and accurate guided bone grafting procedure. Further studies on a larger population of patients are necessary to assess those results and to verify the treatment approach described in this study.


Subject(s)
Alveolar Ridge Augmentation , Bone Plates , Bone Transplantation , Computer-Aided Design , Humans , Prospective Studies , Male , Female , Alveolar Ridge Augmentation/methods , Middle Aged , Bone Transplantation/methods , Adult , Dental Implantation, Endosseous/methods , Treatment Outcome , Surgery, Computer-Assisted/methods , Transplantation, Homologous , Aged , Cone-Beam Computed Tomography
16.
Sci Rep ; 14(1): 9272, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653756

ABSTRACT

The transpedicular procedure has been widely used in spinal surgery. The determination of the best entry point is the key to perform a successful transpedicular procedure. Various techniques have been used to determine this point, but the results are variable. This study was carried out to determine the posterior endpoint of the lumbar pedicle central axis on the standard anterior-posterior (AP) fluoroscopic images. Computer-aided design technology was used to determine the pedicle central axis and the posterior endpoint of the pedicle central axis on the posterior aspect of the vertebra. The standard AP fluoroscopic image of the lumbar vertebral models by three-dimensional printing was achieved. The endpoint projection on the AP fluoroscopic image was determined in reference to the pedicle cortex projection by the measurements of the angle and distance on the established X-Y coordinate system of the radiologic image. The projection of posterior endpoint of the lumbar pedicle central axis were found to be superior to the X-axis of the established X-Y coordinate system and was located on the pedicle cortex projection on the standard AP fluoroscopic image of the vertebra. The projection point was distributed in different sectors in the coordinate system. It was located superior to the X-axis by 18° to 26° at L1, while they were located superior to the X-axis by 12° to 14° at L2 to L5. The projections of posterior endpoints of the lumbar pedicle central axis were located in different positions on the standard AP fluoroscopic image of the vertebra. The determination method of the projection point was helpful for selecting an entry point for a transpedicular procedure with a fluoroscopic technique.


Subject(s)
Lumbar Vertebrae , Pedicle Screws , Lumbar Vertebrae/surgery , Lumbar Vertebrae/diagnostic imaging , Fluoroscopy/methods , Humans , Male , Female , Spinal Fusion/methods , Printing, Three-Dimensional , Computer-Aided Design
17.
BMC Oral Health ; 24(1): 359, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38509530

ABSTRACT

This systematic review explores the accuracy of computerized guided implant placement including computer-aided static, dynamic, and robot-assisted surgery. An electronic search up to February 28, 2023, was conducted using the PubMed, Embase, and Scopus databases using the search terms "surgery", "computer-assisted", "dynamic computer-assisted", "robotic surgical procedures", and "dental implants". The outcome variables were discrepancies including the implant's 3D-coronal, -apical and -angular deviations. Articles were selectively retrieved according to the inclusion and exclusion criteria, and the data were quantitatively meta-analysed to verify the study outcomes. Sixty-seven articles were finally identified and included for analysis. The accuracy comparison revealed an overall mean deviation at the entry point of 1.11 mm (95% CI: 1.02-1.19), and 1.40 mm (95% CI: 1.31-1.49) at the apex, and the angulation was 3.51˚ (95% CI: 3.27-3.75). Amongst computerized guided implant placements, the robotic system tended to show the lowest deviation (0.81 mm in coronal deviation, 0.77 mm in apical deviation, and 1.71˚ in angular deviation). No significant differences were found between the arch type and flap operation in cases of dynamic navigation. The fully-guided protocol demonstrated a significantly higher level of accuracy compared to the pilot-guided protocol, but did not show any significant difference when compared to the partially guided protocol. The use of computerized technology clinically affirms that operators can accurately place implants in three directions. Several studies agree that a fully guided protocol is the gold standard in clinical practice.


Subject(s)
Dental Implants , Robotic Surgical Procedures , Surgery, Computer-Assisted , Humans , Dental Implantation, Endosseous/methods , Computers , Computer-Aided Design , Cone-Beam Computed Tomography , Imaging, Three-Dimensional
18.
BMC Oral Health ; 24(1): 337, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491485

ABSTRACT

BACKGROUND: The selection of post-core material holds significant importance in endodontically treated teeth, influencing stress distribution in the dental structure after restoration. The use of computer-aided design/computer-aided manufacturing (CAD/CAM) glass fiber post-core possesses a better adaptation for different root canal morphologies, but whether this results in a more favorable stress distribution has not been clearly established. MATERIALS AND METHODS: This study employed finite element analysis to establish three models of post-core crown restoration with normal, oversized, and dumbbell-shaped root canals. The three models were restored using three different materials: CAD/CAM glass fiber post-core (CGF), prefabricated glass fiber post and resin core (PGF), and cobalt-chromium integrated metal post-core (Co-Cr), followed by zirconia crown restoration. A static load was applied and the maximum equivalent von Mises stress, maximum principal stress, stress distribution plots, and the peak of maximum displacement were calculated for dentin, post-core, crown, and the cement acting as the interface between the post-core and the dentin. RESULTS: In dentin of three different root canal morphology, it was observed that PGF exhibited the lowest von Mises stresses, while Co-Cr exhibited the highest ones under a static load. CGF showed similar stress distribution to that of Co-Cr, but the stresses were more homogeneous and concentrated apically. In oversized and dumbbell-shaped root canal remnants, the equivalent von Mises stress in the cement layer using CGF was significantly lower than that of PGF. CONCLUSIONS: In oversized root canals and dumbbell-shaped root canals, CGF has shown good performance for restoration of endodontically treated teeth. CLINICAL RELEVANCE: This study provides a theoretical basis for clinicians to select post-core materials for residual roots with different root canal morphologies and should help to reduce the occurrence of complications such as root fracture and post-core debonding.


Subject(s)
Glass , Post and Core Technique , Tooth, Nonvital , Humans , Crowns , Dental Cements , Glass Ionomer Cements , Computer-Aided Design , Dental Stress Analysis/methods , Finite Element Analysis , Composite Resins/chemistry , Materials Testing , Stress, Mechanical
19.
Int J Prosthodont ; 37(7): 89-98, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38498861

ABSTRACT

PURPOSE: To assess crown die trueness using additive manufacturing (AM) based on intraoral scanning (IOS) data and compare it with stone models. MATERIALS AND METHODS: Crown dies with four finish line types- equigingival shoulder (SAE), subgingival shoulder (SAS), equigingival chamfer (CAE), and subgingival chamfer (CAS)-were incorporated into a reference model and scanned with a coordinate measurement machine (CMM; n = 1 scan). Trios4 (3Shape) scans generated a second reference dataset (IOS; n = 10 scans). Using scans, crown dies were produced with two different 3D printers (MAX UV385 [Asiga] and NextDent 5100 [3DSystems]; n = 10 per system). Stone dies were created from conventional impressions (n = 10). Specimens were digitized with a laboratory scanner (E4, 3Shape). Trueness was evaluated with Geomagic Control X (3DSystems). Data analysis was done using Shapiro-Wilk, Levene, ANOVA, and t tests (α < .05). RESULTS: All crown dies fell within the clinically acceptable trueness range (150 µm). IOS exhibited significantly lower (P < .05; Δ ≤ 21.7 µm) or similar trueness compared to stone models. Asiga dies demonstrated similar and NextDent significantly lower marginal trueness than IOS (P < .05; Δ ≤ 57.3 µm). Most AM margin areas had significantly lower trueness than stone (P < .001; Δ ≤ 57.2 µm). Asiga outperformed NextDent (P < .001). Shoulder trueness surpassed chamfer in optical scans (P = .01). Finish line design and gingiva location did not have a significant impact on AM and stone models (P > .05). CONCLUSIONS: Combining IOS and AM achieves clinically acceptable crown die trueness for single molar teeth. The choice of AM device is critical, with Asiga outperforming NextDent. Finish-line design has an impact on optical scans. Finish-line design and marginal gingiva location have little effect on AM trueness.


Subject(s)
Computer-Aided Design , Tooth , Workflow , Crowns , Dental Impression Technique , Imaging, Three-Dimensional
20.
Int J Prosthodont ; 37(7): 119-126, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38498863

ABSTRACT

PURPOSE: To evaluate the effect of model resin type and time interval on the dimensional stability of additively manufactured diagnostic casts. MATERIALS AND METHODS: Ten irreversible hydrocolloid impressions and 10 impressions from an intraoral scanner were made from a reference maxillary stone cast, which was also digitized with a laboratory scanner. Conventional impressions were poured in type III stone (SC), while digital impressions were used to additively manufacture casts with a nanographene-reinforced model resin (GP) or a model resin (DM). All casts were digitized with the same laboratory scanner 1 day (T0), 1 week (T1), 2 weeks (T2), 3 weeks (T3), and 4 weeks (T4) after fabrication. Cast scans were superimposed over the reference cast scan to evaluate dimensional stability. Data were analyzed with Bonferroni-corrected repeated measures ANOVA (α = .05). RESULTS: The interaction between the main factors (material type and time interval) affected anterior teeth deviations, while the individual main factors affected anterior teeth and entire-cast deviations (P ≤ .008). Within anterior teeth, DM had the lowest deviations at T3, and GP mostly had lower values at T2 and lower deviations at T3 than at T0 (P ≤ .041). SC had the highest pooled anterior teeth deviations, and GP had the highest pooled entire cast deviations (P < .001). T3 had lower pooled anterior teeth deviations than at T0, T1, and T4, and higher pooled entire cast deviations than T1 were demonstrated (P ≤ .027). CONCLUSIONS: The trueness of nanographene-reinforced casts was either similar to or higher than that of other casts. Dimensional changes were acceptable during the course of 1 month.


Subject(s)
Computer-Aided Design , Dental Impression Technique , Maxilla , Imaging, Three-Dimensional
SELECTION OF CITATIONS
SEARCH DETAIL
...